Students

Grad Student Spotlight: Andrea Kadilak

By Jayna Miller

andrea1The Chemical Engineering graduate program at UConn provides the opportunity for students to obtain a thorough understanding of the principles of chemical engineering and gain the practical skills needed to succeed in the workplace. Students have the chance to get involved in a number of useful research and teaching opportunities to better prepare for their future.

Grad student Andrea Kadilak has taken advantage of many of the programs and activities that UConn had to offer. Her most rewarding experience during her years at the university was her involvement with the NSF GK-12 Fellowship Program, where she worked with high school students to inspire an interest in science.

“I worked with students at Windham Tech to raise awareness of career options in physics, chemistry, and engineering – I also showcased the fun side of science through experimental demonstrations,” she says.

In addition to the NSF GK-12 Fellowship, Andrea was also involved in a number of on-campus engineering groups. She is currently the Chairperson for the CBE Grad Student Association, and is the Activities Director for the local chapter of AIChE.

“These leadership positions provide an opportunity for me to plan events, network, and organize meetings that bring together all of the engineering programs at UConn, to create a collaborative atmosphere and provide a wide variety of research opportunities for students,” she says.

These positions were not Andrea’s first leadership and work experiences. Prior to attending UConn, she worked as a Process Engineer at Solutia for two years, but decided that she wanted to return to research in a university setting.

Andrea’s research currently focuses on the NSF EFRI Termite Grant, which involves working with a team of engineers, including CBE professor Leslie Shor, to simulate the termite digestive tract in a micro-fluidic device. Termites are able to efficiently break down cellulose and other woody materials into biofuels to use as a food source. Through this research, the team hopes to culture the digestive bacteria in the micro-fluidic device in order to observe it, and perhaps recreate the biofuels, which will have an environmental benefit because it can reduce fuel needs.

Andrea has received multiple accolades for her research at UConn.  She received the Women’s Initiative Committee Travel Award at the Minnesota AIChE Meeting in 2011, and earned 2nd place in the Poster Presentation Competition. In addition, she was the recipient of an ACS Meeting Certificate of Merit in 2012.

In the future, Andrea hopes to work in industry, but also to continue her personal research. She enjoyed working in a chemical plant in the past, but would like to achieve a balance and bridge the gap between research and the implementation of research practices in a process.

Senior Design Day 2014

By Sydney Souder

team1The excitement was evident as more than one thousand visitors entered Gampel Pavilion for UConn School of Engineering’s Senior Design Day on Friday, May 2, 2014. The mezzanine of the Pavilion was lined with posters and displays outlining the projects of sixteen teams of senior class Chemical & Biomolecular Engineering majors.

Friends and family visited each team’s display to view the results of a year of hard work. Faculty and industry judges stayed longer, asking probing questions and listening carefully as the students explained the intricacies of their projects.

“It’s rewarding to get positive feedback on the work you’ve done all year,” says William Hale whose project sponsored by Aero Gear won second place in the department.

“Besides your grades and resume, nothing is more powerful than a strong story. An in-depth design experience sounds great to companies hiring our students,” says Prof. Jeffrey McCutcheon, a mentor for several capstone design projects.

team2

The Department of Chemical & Biomolecular Engineering prides itself on its ability to provide students the critical tools necessary for their future successes. The rigorous four-year CBE curriculum provides students in-depth skills in science, technology, engineering and math (STEM). As the last step before graduation, the department requires that students work in teams and showcase their proficiencies in a final challenge: capstone design.

“Capstone design has been retooled by our talented faculty, and is now a truly unique experience for our seniors and industry sponsors alike,” says Doug Cooper, Head of the CBE department.  Students, guided by faculty and industry mentors, are tasked with analyzing a chemical system, process, or component, subject to economic, environmental, and health and safety considerations.

“Our students worked on 14 different projects ranging from developing an artificial kidney using advanced manufacturing techniques, to developing a continuous process for producing coffee,” says Prof. Leslie Shor, this year’s Capstone Design faculty leader.

One group led by Prof. McCutcheon collaborated with KX Technologies, a Marmon Water/Berkshire Hathaway Company.  During the design team’s journey of discovery and invention, they visited the company headquarters in West Haven, CT, to present their work. Technology experts from the company were in attendance and engaged the students with questions and advice.

team3

“Capstone design has allowed me to put technical knowledge to use in a real world situation. I am grateful for the opportunity to work hands-on with a company, and I think that I will take away valuable time management and interpersonal skills,” says Diva Evans, one of the three group members to visit KX Technologies.

Beyond adding a substantial boost to a resume, this comprehensive program gives students the early experience to think, work and act as an engineer. “You’re not just doing problems out of a book,” says James Cioffi, another member of the second place team, “you’re getting real-world results, and it’s a new thing to be impressed with the work you’ve done.”

The number and diversity of projects in this year’s program made this a challenging, but exciting year for the seniors, and the outcome has no doubt been of benefit to the students, and will be to their future employers.

Students are faced with challenges in planning, prioritizing and communicating, even adapting should something go wrong. “I think many students are also learning something about themselves, about their own strengths and weaknesses, likes and dislikes, and maybe what sort of work they would like to do next year,” says Prof. Shor.

 

Students Design Artificial Kidney with 3-D Printing

UConnTodayBy Rob Chudzik.
Senior chemical engineering student Derek Chhiv, right, discusses with Professor Anson Ma his group's prototype for an artificial kidney. The prototype was generated through 3-D printing. (Al Ferreira for UConn)Republished with permission of UConn Today.

 

 

Three-dimensional printing has garnered coverage in the popular press for its application in the custom manufacturing of tools and mechanical parts. But six School of Engineering seniors have recently taken the application of the technology into the medical field, using 3-D printing to create body parts.

Under the direction of Anson Ma, assistant professor in the Department of Chemical and Biomolecular Engineering and the Institute of Materials Science, two three-person teams of chemical engineering students were tasked with creating an artificial kidney for their Senior Design Project using 3-D printing technology. 3-D printing is an additive manufacturing method capable of creating complex parts that are otherwise impossible or extremely difficult to produce.

The students participating were: Derek Chhiv, Meaghan Sullivan, Danny Ung, Benjamin Coscia, Guleid Awale, and Ali Rogers. They are one of the first classes of students to partner with a commercial 3-D printing company, ACT Group, to create a prototype.

The challenge the teams set out to tackle is rooted in a very real problem.

The United States Renal Data System reports that, as recently as 2009, End-Stage Renal Disease (ESRD) resulted in over 90,000 deaths. Options for treatment of renal disease are essentially limited to either an organ transplant or dialysis. However, there is a limited supply of transplantable kidneys, with demand far outstripping the supply; and dialysis is expensive and is only a temporary solution.

According to data from the National Kidney Foundation, there are currently nearly 100,000 people awaiting kidney transplants in the United States, yet only 14,000 kidney transplants took place in the country this year. An additional 2,500 new patients are added to the kidney waiting list each month. Faced with these challenges, the two UConn teams set out on a year-long effort to design and develop a prototype of a cost-effective, functional artificial kidney using chemical engineering principles and 3-D printing technology.

“The objective of the design project is to get these students to combine the latest technology and their chemical engineering knowledge, learned over their four years at UConn, to solve a technical problem where we can make a difference,” notes Ma. “Can they push the technology further?”

Guleid Awale, one of the seniors, said the two design teams each took a slightly different approach to the problem. “While the other team utilized techniques such as electrodialysis and forward osmosis in their prototype, our group opted for mainly hollow fiber membrane technology commonly found in traditional hemodialysis treatments.”

Benjamin Coscia ’14 (ENG) explains the hollow fiber membrane technology: “Because 3D printing resolutions are not currently low enough to print a structure which will actually filter blood, the file is of only the shell of the kidney. Hollow fiber membranes will be installed on the inside to do the filtration function. The kidney will then be sealed together using the threads and sealing o-rings. A fluid called dialysate will be circulated on the outside of the membranes, inside of the shell, which will cause flux of components from the blood. A waste stream maintains the person’s ability to urinate. The outside of the shell can be used as a substrate for growth of biological material for ease of integration into the body.”

After undertaking the research and development of the design, the teams designed the prototype using AutoCAD software. Then each team collaborated with UConn technology partner ACT Group of Cromwell, Conn. to select the appropriate polymers, as well as the right printer to use in printing the particular prototype design.

The two teams presented their projects on May 2 at the School of Engineering Senior Design Demonstration Day.

“The biggest challenge in approaching the project was applying the engineering knowledge we’ve gained during our undergraduate years to a more complex biological application,” Awale notes. “This forced us to come out of our comfort zone and rely on our problem-solving skills in order to come up with viable solutions.”

Chemical Engineering Student Garners National Recognition

By Sydney Souder

Fischer

Chemical Engineering junior Ari Fischer has been named a 2014 Udall Scholar. Fischer is UConn’s fifth Udall Scholar and the Department of Chemical and Biomolecular engineering’s second recipient of the competitive scholarship in four years.

The Morris K. Udall and Stewart L. Udall Foundation is one of five federal foundations established by Congress. Since 1996, the program has awarded almost $7 million in scholarships to students dedicated to conserving the environment. “It’s different compared to other scholarships because everyone unites over one passion, even if they come from different backgrounds,” says Fischer.

Of 489 eligible applicants from 47 states and Puerto Rico, the Foundation chose 50 scholars and 50 honorable mentions. This summer, the 2014 Scholars will assemble and meet in Tuscan for an educative leadership orientation.

This scholarship is one in a long run of honors Fischer has accumulated in his three years at UConn. He is the recipient of the John & Carla Augustyn Scholarship, the Connecticut Space Grant Consortium Undergraduate Research Fellowship, the UConn IDEA Grant, an Office of Undergraduate Research (OUR) Travel Grant, and the UConn Academic Excellence Scholarship. Although academics and research have traditionally been Fischer’s strengths, this latest tribute recognizes his service and leadership in a compelling discipline.

Fischer has been empowered by Chemical Engineering since his freshman year at UConn. Despite his love for the field, he acknowledges that Chemical Engineering contributes to many of the problems facing the planet, and he has made it his mission to reverse these effects.

“This is probably the first time I’ve considered myself an environmentalist,” says Fischer, “I’ve been passionate about nature and the environment for a long time, but I didn’t feel a part of the environmentalist community until I came to UConn.”

Fischer has already initiated his own projects committed to the environment. Using his IDEA Grant, Fischer has addressed the oil drilling and waste problems facing the planet by recycling spent coffee grounds into a means for fuels, chemicals and commodities production. Through another recent accolade, a CT Space Grant Consortium award, he is designing an oxygen generator used in carbon dioxide removal. “The frontiers of research offer an exciting new age in energy production,” said Fischer in his application, “and I am committed to designing revolutionary technologies that harness materials and processes in novel ways which enable today’s theories to be implemented on an industrial scale.”

Fischer believes he especially strengthened his environmental outlook last spring as an exchange student in South Korea. He says he will never forget hiking at Bukhansan National Park where he glimpsed the compatibility of the modern city with mountain serenity. It was during this moment of harmony with nature that Fischer was inspired to conserve as much as he could.

Fischer has one year left at UConn, but ultimately plans to earn a PhD in Chemical Engineering. Currently excited by green startups, Fischer hopes to lend his abilities to engineer clean energy alternatives in the future.

UConn hosts 2014 Northeast Regional AIChE Conference

By  Sydney Souder

The Department of Chemical & Biomolecular Engineering was the proud host of the 2014 Northeast Student Regional Conference for the American Institute of Chemical Engineers on April 4-5, 2014. The event attracted more than 300 undergraduate chemical engineering students from 21 schools, traveling from as far as McGill, Cornell and Maine, to as near as UMass and the University of New Haven.

After one and a half years of preparation, the UConn planning committee was excited to see the conference come to life. The day’s success was a remarkable feat considering UConn’s initial plans were to accommodate no more than 200 guests. “I was pleased by the support of our committee and the dedication of our volunteers,” says Nathan Kastner, UConn undergrad (Cheg ’14) and chair of the regional conference.

Each year, the AIChE conference consists of several signature events including the Student Paper Competition, the Chem-E Car race, the Student Poster Competition, and the Chem-E Jeopardy challenge.

ChemECarTestSaturday kicked off with the paper competition where students delivered technical talks on their personal research, followed by a question and answer session led by a panel of faculty judges. Contestants were evaluated on the execution of their designs and results, in addition to their delivery and interaction with the audience. “The quality of the papers and the poise of the students were very impressive this year,” commented Prof. Dan Burkey of the University of Connecticut. Michelle Teplensky of MIT authored the winning paper presentation, “Controlled Release of Type-2 Diabetes Systems.”

Next, twenty-two ambitious students participated in the Poster Competition. Each student’s poster was visited by four judges who assessed the overview of their research findings and approaches. Christina Bailey of WPI took top honors with her project entitled, “Gold Nanoparticle Interactions with Model Biological Membranes.” UConn’s Abbey Wangstrom (Cheg ‘15) took second honors.

ChemECarTakeOffThe Chem-E car race was an intense day-long affair. Leading up to the competition, students designed model-sized cars powered by a chemical reaction. Their machines were required to stop after a specific distance, either by exhausting their fuel supply at just the right moment, or by the triggering of a different chemical reaction.

The 14 competing teams spent the morning preparing the proper mixtures and formulas for their cars, and then held their breaths in anticipation, hoping that their machines would halt at the precise distance—25 meters—revealed just hours before. Cornell’s “Battery Car” entry was the most successful, stopping within inches of the mark. “Each teams’ spirit was contagious, and their focus to rise to the challenge made it a thrilling event and a great day overall,” said Kastner.

ChemEJeopardyThose not involved in the car competition cheered their teams on in the Chem-E Jeopardy challenge. With trivia categories including kinetics, thermodynamics, heat transfer, and more, 12 teams of four proved who was savviest in chemical engineering related topics. During a thrilling Final Jeopardy round, WPI knocked Clarkson University out of first place by betting it all and coming out on top.

The winners of each regional competition will compete on the national stage in Atlanta this November.

The conference concluded with an awards banquet and a keynote speech by UConn alumnus Mark Vergnano, executive vice president of DuPont. Vergnano shared his career journey with the attendees, and the personal values driving both him and DuPont. He also detailed the exciting future in store for the world of chemical engineering and how he would approach starting a career if he were to do so in today’s world.

Vergnano ended with an extended question and answer period, giving students the opportunity to draw on his extensive achievements from their own perspective. “Based on my interaction with the students at this event, I feel very good about the future of Chemical Engineering,” he said afterwards.

 

AIChE 2013 Annual Conference Draws Strong Attendance from CBE Undergrads

By Jayna Miller

aichemeet1The University of Connecticut Chemical & Biomolecular Engineering undergraduate students recently attended the AIChE 2013 Annual Meeting in San Francisco. The AIChE Annual Meeting is an educational forum for chemical engineers focused on research, growth, and innovation. Industry and academic professionals discussed a variety of topics relating to new research, technologies, and studies in chemical engineering.

During the conference, undergraduate students attended events designed to present current research on the latest advances in core areas of chemical engineering, while also covering specific topical areas. Specialty topics included related fields such as alternative energy, sustainability, bioengineering, and process safety.

Several undergrad students gave presentations on their research. William Hale, working with Chemical & Biomolecular professors Ranjan Srivastava and Richard Parnas, presented “Design Optimization by Response Surface Methodology for Continuous Fermentative Production of 1,3 Propanediol From Waste Glycerol By Product of Biodiesel Processes.” Oscar Nordness, a Junior working with Zhiquan Zhou and professor George Bollas, presented in both the oral and poster competitions, and won the 2nd award in the Student Poster Competition. Oscar’s poster title was “Reactivity Analysis of Ni, Cu, Fe Oxygen Carriers in Fixed Bed Chemical Looping Combustion.” His oral presentation was “On the kinetics of Ni-based oxygen carrier reduction and oxidation studied in thermogravimetric analysis and fixed-bed reactors.”

aichepic2

 

Grad Student Spotlight: Yixin Liu

By Jayna Miller

yixin1At the University of Connecticut, Chemical Engineering graduate students enjoy access to an outstanding combination of academic excellence, student resources, financial support, and a vibrant community.

For grad student Yixin Liu, this is especially true. “I really appreciate that the program gave me so many opportunities to attend different conferences to present my work and communicate with others, such as AIChE annual meeting every year,” she says. She also enjoys the setting of UConn’s campus – which is very different from her hometown.

Yixin moved to Connecticut in 2010 after completing her undergraduate education at Zhejiang University, which is near the east seacoast of China. UConn was her first offer, and after admiring the respected graduate program and the helpful financial support she would receive, she decided to choose UConn to complete her Ph.D.

During her time at UConn, Yixin has worked with Dr. Yu Lei on the development of a high temperature gas sensor which will improve combustion efficiency.
“Real-time, in-situ monitoring and control of combustion-related gases are a top priority in many industrial applications, such as power plant, automotive, metal processing and casting, chemical and petrochemical industries,” she says. These high temperature gas sensors are designed to monitor gas concentrations after combustion and to optimize the combustion process via feedback system, which can improve the combustion efficiency, save more energy, and also reduce the emission of pollutants.

“Our goal is to develop sensors which can be operated right after combustion, so we can immediately get the full picture of combustion conditions and provide more precise control of combustion,” Yixin says.

Yixin’s work on this research throughout her graduate career has been publicly recognized. She has published 10 papers in various scientific journals, four of which she was the lead author. Following her graduation this fall, Yixin plans to work in industry, preferably at a large company. She would especially enjoy continuing her research in a practical, applied setting.

REU Student Innovators Wow Business Community

Screen shot 2013-06-26 at 1.29.22 PMRepublished with permission of Momentum,
a School of Engineering electronic publication.

 

The Research Experience for Undergraduates (REU) program provides undergraduates with exposure to a stimulating research environment.  The students participating in the REU program had the opportunity to present their work during the July 26 Innovation Connection academic/industry networking event hosted at Nerac in Tolland and co-sponsored by Nerac and OpenSky. Nerac president Kevin Bouley, who hosts a number of UConn start-ups in his Tolland facility, noted “This event showcases the collaborations between students, faculty and the private sector.  It was very interesting to see RPM Sustainable Technologies participate, given that they are located in the Nerac building as a launching pad for their commercial enterprise.”

Before an audience of entrepreneurs, small business gurus, state government officials, IP experts, faculty and members of the investment community, each young researcher/entrepreneur delivered a two-minute “elevator pitch” presentation of his/her work and then spoke in greater detail with attendees during the informal networking event.  The forum enabled the students to test their mettle in the real-world situation faced by entrepreneurs every day.

While all REU programs entail scholarly research, this innovation-oriented REU requires the students to participate in a business and entrepreneurship seminar taught by professor Richard Dino of the School of Business. Furthermore, the students’ research was co-sponsored by commercial businesses – a novel twist that underscores the commercial intent of the research challenges they addressed while working in the UConn faculty laboratories.

The REU theme was conceptualized by Dr. Jeffrey McCutcheon, assistant professor of Chemical & Biomolecular Engineering, and Entrepreneur-in-Residence Robin Bienemann, and NSF began funding the project in 2012.  In his introductory remarks to the audience, Dr. McCutcheon explained the genesis of the Innovation REU and noted that his goal was to “introduce the students to applied science and the way products make it to market.”

The eight innovation REU students and their projects are summarized below.

reu15-300x220Joseph Amato (Univ. of Minnesota – Twin Cities) researched reactive spray deposition technology for the one-step production of catalysts and electrodes in fuel cells. His research aim was to improve the efficiency of proton exchange membrane (PEM) fuel cells for the fuel cell and fuel-cell automotive markets. Sponsor: Proton OnSite; faculty mentor: Dr. Radenka Maric (Chemical & Biomolecular Engineering). Poster.

Isaac Batty (California State Univ. – Long Beach) researched bio-oil production from the fast catalytic pyrolysis of lignocellulosic biomass (trees).  His objective was to investigate the effect of temperature and various catalyst/biomass ratios on the quality of bio-oil produced from biomass. Sponsor: W.R. Grace & Co.; faculty mentor: Dr. George Bollas (Chemical & Biomolecular Engineering). Poster.

Ryan Carpenter (Univ. of Buffalo)designed an experimental apparatus enabling researchers to observe the antimicrobial susceptibility of multispecies biofilms. Biofilms are common (e.g., dental plaques) and often contain multiple species of bacteria such as Staphylococcus aureus. Biofilms are a costly problem for many industries, including food processing, oil recovery and medical implant operations.  Sponsor: BASF; faculty mentor: Dr. Leslie Shor (Chemical & Biomolecular Engineering). Poster.

William Hale (UConn) sought to understand whether acetate and butyrate influence the anaerobic fermentation of waste glycerol – a byproduct from biodiesel production – into 1,3-propanediol. 1,3-propanediol is used in the manufacture of polyesters, solvents, lubricants and other products. Sponsor: RPM Sustainable Technologies; faculty advisor: Dr. Richard Parnas (Chemical & Biomolecular Engineering). Poster.

Justine Jesse (Univ. of Massachusetts) researched heat treatments that produce the strongest possible electrospun nanofibers, used in water filtration and industrial plants, without compromising performance. Sponsor: KX Technologies; faculty mentor: Dr. Jeffrey McCutcheon (Chemical & Biomolecular Engineering). Poster.

Kyle Karinshak (Univ. of Oklahoma) researched the photocatalytic degradation of a specific fluorescent dye in aqueous environments through the use of a titanium oxide/metal doped catalyst. Kyle found titanium oxide/metal-doped fly ash to be an effective catalyst enabling the degradation of the dye, which is released from textile plants and inhibits the passage of sunlight through water/ Sponsor: VeruTEK Corp.; faculty mentor: Dr. Steven Suib (Chemistry; Institute for Materials Science). Poster.

Zachariah Rueger (Iowa State Univ.) sought to maximize the specific surface area of activated carbon nanofiber nonwoven mats, which are used in water purification and for electricity generation in certain fuel cells. A greater surface area allows greater volumes of wastewater to be purified quickly. Sponsor: KX Technologies; faculty mentor: Dr. Jeffrey McCutcheon (Chemical & Biomolecular Engineering). Poster.

Kyle Stachowiak (Vanderbilt Univ.) researched techniques to optimize the atomic layer deposition of copper on a component, the rectenna, used to enhance the performance of solar cells. A rectenna collects solar radiation and converts it to usable energy. Techniques for applying copper more reliably will improve the efficiency of solar cells. Sponsor: Scitech Associates LLC; faculty mentor: Dr. Brian Willis (Chemical & Biomolecular Engineering). Poster.

Grad Student Spotlight: Jason White

By Jayna Miller

JasonWhite2The chemical engineering graduate program at the University of Connecticut is comprised of bright, innovative leaders who are motivated by change and challenge. The program offers the opportunity for students to enhance their skills and develop their potential.

One student who can attest to the merits of this program is Jason White. Jason completed his undergraduate degree at UConn, and decided he wanted to continue his research here after enjoying his undergraduate experience. Throughout his time at UConn, Jason has worked with Dr. Ranjan Srivastava on analyzing biological systems and developing computational tools that deal with human health-related problems. These analyses have implications towards personalized medicine for each patient.

“Our goal is to use computational tools to understand how a disease progresses and to analyze whether treatments for patients are optimal,” Jason says. Genetic algorithms are one such method that Jason employs to develop mathematical models of biological systems from experimental data sets. He anticipates that these models could be used to help personalize medicinal treatments on a patient-by-patient basis. For instance, he created a mathematical model of an oral mucositis system, which can be simulated to help predict the outcome and potential treatment options for patients suffering with this disease.

In addition to his research, Jason has also been involved in a number of campus activities. His favorite was the GK-12 Program sponsored by the National Science Foundation, which allowed him to work once a week with technical high school students.

“I enjoyed the GK-12 experience – it gave me the freedom to develop lessons and projects, but also to continue my research as well,” he says. Through this program, he was able to work with students to build a compost water-heating system, which was presented at Lemelson-MIT’s Eureka Fest. Jason has also helped motivate students to get involved in engineering by tutoring undergraduates from Grasso Tech and by serving as a TA at UConn. In the future, Jason plans to pursue these interests and become a professor, so he can maintain the balance between teaching and his research.

During his time at UConn, Jason has earned a number of accolades for his work, such as a Unilever Scholarship, an Arnold Griffin Scholarship, and an NSF GK-12 Fellowship. He has also published two proceedings in the Journal of Clinical Oncology.

CBE Will Host the 2014 AIChE Northeast Regional Student Conference

After a round of competitive bidding, it was announced that the Chemical & Biomolecular Engineering Department at the University of Connecticut will host the 2014 AIChE Northeast Regional Student Conference.
To be held in the spring of 2014, the regional conference is a place where students from schools around the northeast will come together to share their undergraduate research experiences, attend workshops, and network with other students and local companies that will sponsor the event. Highlights of the conference will include the undergraduate paper and poster competitions, and the highly anticipated Chem-E-Car competition.
Regional winners from all of these events will earn the opportunity to compete on the national stage at the annual professional meeting, which will be held in Atlanta in Fall 2014. The student executive board will begin planning for this event now, and companies or alumni that may be interested in participating, please contact Professor Daniel Burkey.