News

Student Researchers Win EPA Sustainability Grant

By Sheila Foran

A student team from the University of Connecticut is one of five winners in the Northeast in the Environmental Protection Agency’s P3 student design competition for sustainability research. Their achievement carries a monetary award of up to $15,000 to help fund their work, as well as an opportunity to compete for $90,000 during the second phase of the competition.P3 logo

The goal of UConn’s entry, one of 42 selected nationally, is the development of a cost-effective, environmentally friendly flame retardant to be used in fire prevention and containment. In comparison to existing flame retardants, UConn’s proposal, “Environmentally Friendly Flame Retardants Based on Inorganic Nanosheets,” is designed to have similar or higher performance than products currently in use but with only a minimum release of toxic gases during combustion, and with no leak of toxic chemicals during production, transportation, and use. An additional benefit is that the cost will be similar or lower than that of currently used retardants.

Dr. Luyi Sun, associate professor in the Department of Chemical and Biomolecular Engineering, says that current fire retardants have significant environmental and health issues. The product designed by UConn students will be a waterborne, halogen-free coating composed of hundreds of layers of well-aligned inorganic nanosheets that can physically block the heat/oxygen transfer and thus effectively retard flames. Its waterborne nature ensures that no volatile organic compounds will be released during the coating formation process.

The project is an interdisciplinary collaboration between students from the Department of Chemical and Biomolecular Engineering, the Institute of Materials Science, and the Department of Civil and Environmental Engineering.

Team members include Ph.D. candidates Jingjing Liu from Materials Science, and Jingfang Yu, from Chemical and Biomolecular Engineering; seniors Lauren Kovacs, Brittany Bendel, and Arie Havasov who are Chemical and Biomolecular Engineering majors; and junior William Masinda, a Materials Science and Engineering major.

The three P’s in the EPA competition’s title stand for People, Prosperity, and the Planet. It is a two-phase team contest, where students initially prepare proposals that compete for funding of up to $15,000 to pursue their research. In April, the funded teams bring their projects to Washington, D.C., where they are judged by a panel of experts convened by the American Association for the Advancement of Science at the annual National Sustainable Design Expo. The winning team will receive a grant of $90,000 to take its design to real-world application.

Grad Student Spotlight: David Gamliel

By Sydney Souder

Graduate students have many reasons to choose UConn, from conducting research in world class facilities, to a welcoming learning environment, and no shortage of school pride (not everyone wins dual National Championships in basketball).

“Don’t go anywhere else!” says second year PhD student David Gamliel of the Department of Chemical and Biomolecular Engineering Graduate Program. David hails from Amherst, Mass., and received his B.S. in Chemical Engineering from UMass Amherst, but his decision to pursue his PhD in Storrs was simple.

“I picked UConn because I was really interested in energy engineering, and I enjoyed the orientation. I am very lucky I ended up at the Center for Clean and Energy Engineering (C2E2),” he says.

David’s faculty advisor is Dr. Julia Valla. His research focus involves converting biomass into energy through pyrolysis. Pyrolysis, which occurs when biomass is brought to elevated temperatures without oxygen, produces an array of useful chemicals. Some of these are the same as those found in gasoline. David is studying the best operating conditions for pyrolysis, and how small scale microreactors can be scaled up to maximize the conversion of biomass to useful products.

“I feel like I am doing meaningful and impactful research,” he says of his work, which can be viewed at iknowgreen.uconn.edu. “The level of independence given to me as a student researcher was beyond my expectations.”

Another advantage of studying at UConn, David adds, “I really enjoy the opportunities to travel and present my research.” He presented at the ACS Conference in March, and attended the Energy and Fuels section dinner, a great networking event. This November he will present a poster and give a lecture at AIChE in Atlanta.

David is involved outside of the lab, too. He is the treasurer of the Chemical Engineering Graduate Student Association, and participates in outreach work. As a GK12 fellow, David shares weekly lessons about science, math and engineering at Wolcott Technical High School in Torrington, Connecticut. He is also an outreach ambassador for C2E2, and has participated in the Joule fellowship program.

“I would like to go into industry,” says David, “But I am still open to the idea of becoming a professor. “

CBE Professor Awarded Prestigious NARSAD Grant

By Sydney Souder

cho_yongku_profileDr. Yongku Cho, Assistant Professor in the Department of Chemical and Biomolecular Engineering, has received a prestigious and highly competitive NARSAD Young Investigator Grant. Funded through the Brain & Behavior Research Foundation, NARSAD grants are dedicated to research in brain and behavior disorders. The Young Investigator Grant supports promising young scientists conducting neurobiological research.

Dr. Cho’s two-year grant offers critical backing to enable him to collect pilot data for his innovative ideas. His grant will support Dr. Cho’s research group to develop a novel approach for rapid and reversible knockout of target genes. His group will research which regulated protein levels affect brain circuits. They will specifically study the mechanism of GABAA receptor dysfunction. Deficits in GABAA receptor function have been linked to multiple neurological and psychiatric disorders, such as epilepsy and schizophrenia. With his new technique, he intends to study the role of GABAA receptor interacting proteins, which may lead to therapeutic targets for such diseases.

First exposed to engineered antibodies during his graduate research at Wisconsin, Dr. Cho is now interested in manipulating these proteins to include new functions. “The broader objective of the work is to engineer antibodies with useful functionalities that they normally would not have,” says Dr. Cho.

If successful, this project could have wide applications and might connect with UConn’s interests as well. Dr. Cho foresees a potential collaboration with the Jackson laboratory for Genomic Medicine. The new laboratory at UConn’s Farmington campus seeks genomic solutions to disease, making medicine more precise and predictable. They are one of world’s leading institutes for transgenic mouse research.

“With the methods from this research, we might be able to pinpoint gene functions within such model organisms,” says Cho. For more information on Dr. Cho and his research, please visit his website.

 

REU Summer A Success

By Sydney Souder

For the third consecutive summer, UConn’s Chemical & Biomolecular Engineering (CBE) Department hosed an NSF sponsored Research Experience for Undergraduates (REU) summer program.

“The unique aspect of our REU,” said Dr. Jeff McCutcheon, principal investigator for the NSF grant supporting the program, “is that we connected student participants with faculty mentors and company sponsors for a true entrepreneurial or business oriented research experience.”

Lasting ten weeks this past summer, participating students were advised by both faculty and industrial partners, providing them with a unique experience at the interface of academic research and commercialization.

Projects varied across the spectrum of chemical engineering and materials science. This summer produced the following projects: Ceramic Nanofilm Depostion for Vapor Detection Devices (Proton OnSite), Implantable, Wireless Biosensors for Diabetes Care (Biorais), Graphene Polymer Nanocomposites (Cabot Corporation), Water Based Anodes for Lithium Ion Batteries (BYK Additives & Instruments), High-Performance Nanostructured Organic/Inorganic Hybrids for Functional Applications (Nanocor), Development of Scalable Droplet Microfluidic Devices (BASF), Increasing Soil Water Retention with Bacteria (DuPont), Characterization of TiO2 Thin Films on 316L Stainless Steel Formed using a Sol-Gel Technique (VeruTEK Technologies), Plasmonic Nanodevices for Solar Energy Harvesting (Scitech Solar), and Sustainable Biofuels Production (RPM Sustainable Technologies).

Students spent their summer in a world-class academic research laboratory with state-of-the art instrumentation. They also toured local incubator spaces, and participated in an Innovation Accelerator event at a local private incubator.

Laboratory time was balanced with workshops to improve students’ writing and presenting skills. One unique aspect of the program was the short business seminar during which students experienced a flavor of the business side of innovation.

This preparation came in handy for the “Innovation Connection” networking event at summer’s end. Participants pitched their work to the region’s business community during their poster session, and networked with over one hundred people in the field.

The REU experience did much more than the name may imply. This summer’s group of students also held their own barbeques, organized outings to UConn’s Avery Point campus, Mystic, and even attended a New Britain Rock Cats baseball game. These recreational events enriched the already memorable program to an unforgettable summer experience.

Dr. Yu Lei Receives US Patent for Explosive Detecting Sensors

By Sydney Souder

Dr. Yu Lei, Associate Professor of Chemical and Biomolecular Engineering at the University of Connecticut, received a US Patent for his explosive detection technology.

Working with Ying Wang, a former graduate student, Dr. Lei engineered a sensor that provides clear and near-instant results upon contact with explosive vapors. “We initially wanted to synthesize low-cost materials that change color almost immediately when in contact with explosives,” says Lei. The project proved successful and was recently awarded a patent entitled, “Explosives Detection Substrate and Methods of Using the Same.”

The detector senses a range of explosives, from TNT used in construction, to RDX used by the military. It reveals minute traces of explosives when exposed to UV light and viewed by the naked eye.

Lei is now expanding his detection technologies in other forms beyond vapor detection. His latest research seeks to develop a nanoporous florescent film and a fluorescent protein that can reveal explosives in aqueous solutions.

These projects acknowledge funding by the National Science Foundation, the University of Connecticut Prototype Fund, and the Department of Homeland Security. For more information on Dr. Lei and his research, please visit his website.

A Short Interview With Dr. Ioulia (Julia) Valla About Women in Engineering

Women have traditionally been underrepresented in the field of Engineering, but things are changing. Dr. Ioulia (Julia) Valla is an Assistant Research Professor in the Chemical & Biomolecular Engineering Department at the University of Connecticut.

Dr. Valla has won recognition for her work on cleaner fuels while working in industry and academics and is the leader of the iKnowGreen Team. iKnowGreen at the University of Connecticut, is a place for students, teachers, and UCONN engineers to explore green energy together.

Grad Student Spotlight: Andrea Kadilak

By Jayna Miller

andrea1The Chemical Engineering graduate program at UConn provides the opportunity for students to obtain a thorough understanding of the principles of chemical engineering and gain the practical skills needed to succeed in the workplace. Students have the chance to get involved in a number of useful research and teaching opportunities to better prepare for their future.

Grad student Andrea Kadilak has taken advantage of many of the programs and activities that UConn had to offer. Her most rewarding experience during her years at the university was her involvement with the NSF GK-12 Fellowship Program, where she worked with high school students to inspire an interest in science.

“I worked with students at Windham Tech to raise awareness of career options in physics, chemistry, and engineering – I also showcased the fun side of science through experimental demonstrations,” she says.

In addition to the NSF GK-12 Fellowship, Andrea was also involved in a number of on-campus engineering groups. She is currently the Chairperson for the CBE Grad Student Association, and is the Activities Director for the local chapter of AIChE.

“These leadership positions provide an opportunity for me to plan events, network, and organize meetings that bring together all of the engineering programs at UConn, to create a collaborative atmosphere and provide a wide variety of research opportunities for students,” she says.

These positions were not Andrea’s first leadership and work experiences. Prior to attending UConn, she worked as a Process Engineer at Solutia for two years, but decided that she wanted to return to research in a university setting.

Andrea’s research currently focuses on the NSF EFRI Termite Grant, which involves working with a team of engineers, including CBE professor Leslie Shor, to simulate the termite digestive tract in a micro-fluidic device. Termites are able to efficiently break down cellulose and other woody materials into biofuels to use as a food source. Through this research, the team hopes to culture the digestive bacteria in the micro-fluidic device in order to observe it, and perhaps recreate the biofuels, which will have an environmental benefit because it can reduce fuel needs.

Andrea has received multiple accolades for her research at UConn.  She received the Women’s Initiative Committee Travel Award at the Minnesota AIChE Meeting in 2011, and earned 2nd place in the Poster Presentation Competition. In addition, she was the recipient of an ACS Meeting Certificate of Merit in 2012.

In the future, Andrea hopes to work in industry, but also to continue her personal research. She enjoyed working in a chemical plant in the past, but would like to achieve a balance and bridge the gap between research and the implementation of research practices in a process.

Leslie Shor Named a DuPont Young Professor

Momentum logoRepublished with permission of Momentum,

a School of Engineering electronic publication.

 

Dr. Leslie Shorshor caption of Chemical & Biomolecular Engineering specializes in recreating very small habitats – smaller than the width of a human hair in some cases. Building from scratch a simulated habitat that might sustain up to a thousand different organisms that each need different conditions to survive is no easy trick.

But the potential payoffs can be huge – more sustainable agriculture, better ways to fight infection, or more sustainable energy production from biofuels.

One particular project in her lab prompted DuPont to name her a 2014 Young Professor. The annual program recognizes professors engaged in innovative research that addresses global challenges regarding food, energy and production. Shor, one of 10 professors to receive the appointment, will receive $75,000 over the next three years to support their research.

The project that won DuPont’s attention is the same one that won a Grand Challenges Exploration grant of $100,000 from the Bill and Melinda Gates Foundation in 2012.

Hunger and poverty affect 1 billion people. Population growth, changing consumption habits, and a shifting climate will only magnify the problem. So developing new ways to increase food production is crucial. To that end, Shor and other researchers in her lab hope to find a new way to increase crop yields. For this research, she teamed up with Daniel J. Gage (Molecular & Cell Biology), a microbiologist with expertise in the rhizosphere. That’s the region of soil around a plant’s roots where crucial nutrients are absorbed. Beneficial bacteria in the rhizosphere can help plants by inhibiting pathogens and producing antibiotics. The rhizosphere is also home to protozoa – a kingdom of single-celled animals with the ability to move efficiently in soil. That’s where Shor comes in, with her knowledge of artificial microbial habitats and how protozoa migrate in micro-structured environments.

With her collaborators and students, Shor seeks to increase crop yields by using protozoa to distribute bacteria along growing roots. Currently, applications of biologicals or agrichemicals are not targeted, leading to inefficiency and adverse environmental impacts. Solving one problem might lead to the creation of several more. In Shor’s lab, they’re trying to use the environment as part its own solution.

“The soil system is an incredibly complex habitat, and it’s home to organisms from all five kingdoms – plants, animals protista fungi and archae – are all present in the soil,” she said. They interact with each other, and with the air, water, organic matter and soil grains in complex ways. Typically, microbiologists will take organisms out of their natural habitat and put them into an overly simplified lab habitat.

“There’s no microstructure in those habitats, typically,” she said. “Our microhabitats are not the same thing as real soil, but they do contain some of its features. Our microhabitats offer a window into the microworld.”

 

Fellow of the American Chemical Society named

By: William Weir

laurencinDr. Cato T. Laurencin, a Professor of Chemical and Biomolecular Engineering and designated University Professor at UCONN has been named a Fellow of the American Chemical Society.

“The scientists selected as this year’s class of ACS fellows are truly a dedicated group,” said ACS President Tom Barton, Ph.D. “Their outstanding contributions to advancing chemistry through service to the Society are many. In their quest to improve people’s lives through the transforming power of chemistry, they are helping us to fulfill the vision of the American Chemical Society.”

Laurencin, an internationally recognized engineer, scientist and orthopedic surgeon, holds the titles of University Professor and Albert and Wilda Van Dusen Distinguished Professor of Orthopaedic Surgery. He also is a Professor of Materials Sciences and Engineering, and a Professor of Biomedical Engineering. He is the director of UConn Health’s Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences and founding director of UConn Health’s Institute for Regenerative Engineering. He is the Chief Executive Officer of UConn’s cross-university translational institute, the Connecticut Institute for Clinical and Translational Science.

“This is a great honor,” Laurencin said. “The American Chemical Society is one of our nation’s largest science organizations and has made great contributions to the field.”

Laurencin was cited for his seminal contributions in polymer science and polymer-ceramic systems applied to biology. Well-known for his groundbreaking work in biomaterials, he has patented and invented a number of breakthrough technologies. These include the L-C Ligament, the first bioengineered matrix that completely regenerates ligament tissue inside the knee. A Fellow of the American Institute of Chemical Engineers, Dr. Laurencin was named one of the 100 Engineers of the Modern Era at its Centennial celebration. He is an elected member of both the Institute of Medicine of the National Academy of Sciences, and the National Academy of Engineering.

 

Senior Design Day 2014

By Sydney Souder

team1The excitement was evident as more than one thousand visitors entered Gampel Pavilion for UConn School of Engineering’s Senior Design Day on Friday, May 2, 2014. The mezzanine of the Pavilion was lined with posters and displays outlining the projects of sixteen teams of senior class Chemical & Biomolecular Engineering majors.

Friends and family visited each team’s display to view the results of a year of hard work. Faculty and industry judges stayed longer, asking probing questions and listening carefully as the students explained the intricacies of their projects.

“It’s rewarding to get positive feedback on the work you’ve done all year,” says William Hale whose project sponsored by Aero Gear won second place in the department.

“Besides your grades and resume, nothing is more powerful than a strong story. An in-depth design experience sounds great to companies hiring our students,” says Prof. Jeffrey McCutcheon, a mentor for several capstone design projects.

team2

The Department of Chemical & Biomolecular Engineering prides itself on its ability to provide students the critical tools necessary for their future successes. The rigorous four-year CBE curriculum provides students in-depth skills in science, technology, engineering and math (STEM). As the last step before graduation, the department requires that students work in teams and showcase their proficiencies in a final challenge: capstone design.

“Capstone design has been retooled by our talented faculty, and is now a truly unique experience for our seniors and industry sponsors alike,” says Doug Cooper, Head of the CBE department.  Students, guided by faculty and industry mentors, are tasked with analyzing a chemical system, process, or component, subject to economic, environmental, and health and safety considerations.

“Our students worked on 14 different projects ranging from developing an artificial kidney using advanced manufacturing techniques, to developing a continuous process for producing coffee,” says Prof. Leslie Shor, this year’s Capstone Design faculty leader.

One group led by Prof. McCutcheon collaborated with KX Technologies, a Marmon Water/Berkshire Hathaway Company.  During the design team’s journey of discovery and invention, they visited the company headquarters in West Haven, CT, to present their work. Technology experts from the company were in attendance and engaged the students with questions and advice.

team3

“Capstone design has allowed me to put technical knowledge to use in a real world situation. I am grateful for the opportunity to work hands-on with a company, and I think that I will take away valuable time management and interpersonal skills,” says Diva Evans, one of the three group members to visit KX Technologies.

Beyond adding a substantial boost to a resume, this comprehensive program gives students the early experience to think, work and act as an engineer. “You’re not just doing problems out of a book,” says James Cioffi, another member of the second place team, “you’re getting real-world results, and it’s a new thing to be impressed with the work you’ve done.”

The number and diversity of projects in this year’s program made this a challenging, but exciting year for the seniors, and the outcome has no doubt been of benefit to the students, and will be to their future employers.

Students are faced with challenges in planning, prioritizing and communicating, even adapting should something go wrong. “I think many students are also learning something about themselves, about their own strengths and weaknesses, likes and dislikes, and maybe what sort of work they would like to do next year,” says Prof. Shor.