Faculty

Retirement of Prof. Doug Cooper

Prof. Doug Cooper

Dear Friends,

On June 1st, Prof. Doug Cooper retired from the faculty of Chemical & Biomolecular Engineering.  I couldn't let this occasion go unremarked upon.   I’ve been fortunate to have known Doug for about 18 years now.  Indeed, he was the Chair of the Search Committee that hired me.  Many of you may not be aware of the numerous contributions that Doug has made to the Department, the School, and  the University as a whole.

Doug joined UConn in 1985 as a freshly minted PhD from the University of Colorado and has been here ever since.  Doug’s technical expertise is in the area of process control.  Unlike many of his academic peers, Doug had a strong focus on industry and practical applications from the beginning.  He did extensive consulting for the automotive industry in his early years and a tremendous fraction of his research funding was from industry.  Doug’s interests led him down an entrepreneurial path, and he founded Control Station, Inc.  Beginning as a small startup in the early 2000’s, the company weathered the recession of 2008, and today their software is used by over a third of all the Industrial Fortune 500 Companies.

Even with is his entrepreneurial leanings, Doug was a professor through and through.  He translated his practical knowledge to the classroom.  Doug started doing on-line teaching in the early 2000’s, long before MOOC’s were popular and before the technology and infrastructure were available.  Doug instead built his own infrastructure.  He started a blog which included various modules and is now an extensive resource on process control.  He wrote a textbook, which he has made freely available on-line.  He worked with the UConn Co-Gen plant to make it a living lab for the undergrads and to help use it as a pilot-scale test bed for his research ideas on optimization and process control.  He also helped teach our students about the “softer” skills, running an annual workshop for the UConn Chapter of AIChE.  He would critique resumés and work through mock interviews with students.  He would teach what was appropriate to ask, what not to ask, and how to speak, dress, etc.  Outside of the workshop, if any student wanted their resumé reviewed, Doug would do it.

In addition to the research and teaching, Doug’s desire to elevate UConn led him to a number of administrative roles.  He served as Department Head twice.  The first time was from 2004 to 2006 and the second time was from 2013 to 2016.  In addition, as a testimony to his passion for education, Doug served as Vice Provost for Undergraduate Education & Regional Campuses from 2009 to 2011.  Finally, I would point out that Doug was also Director of Engineering Computing Services, a service I don’t believe many in the Department are aware of.

Doug’s strong efforts have been recognized via numerous accolades.  He has been the recipient of the Faculty of the Year Award as selected by the graduating class multiple times.  He was also selected as a University of Connecticut Teaching Fellow in 2003 and was a recipient of the extremely prestigious and competitive US Professor of the Year Award as recognized by the Carnegie Foundation in 2004.  Doug is a Fellow of the American Institute of Chemical Engineers and a member of the Connecticut Academy of Science and Engineering.

Personally, I’ve found it to be a privilege and an honor to know Doug.  He helped smooth my transition here to UConn as a new faculty member when I was still learning the ropes.  Throughout the entire time I’ve known Doug, one thing has become abundantly clear to me.  Doug loves this Department.  Everything he has done has always been in pursuit of making the Department a better place for students, staff, and faculty.  Whenever I’ve spoken to Doug, his focus has always been on how we can remove impediments faced by faculty to make them as successful as possible; what are practical effective methods to teach students and what are the topics that they will really use after graduation; and what can we do to ease the ever increasing burden on our staff.

We have all been very fortunate to know Doug, and the Department is a better place for him being here.  Thanks Doug for all the has done for us.

Ranjan Srivastava
Prof. & Dept. Head

Professor Anson Ma Named Air Force Faculty Fellow

Assistant Professor Anson W. Ma (Photo courtesy of Peter Morenus/UConn)

The Chemical and Biomolecular Engineering Department would like to congratulate Professor Anson Ma on receiving this prestigious fellowship. More information regarding this fellowship and how it relates to his research can be found here.

Dr. Barry Carter Appointed as Honorary Fellow

Photo of Professor Barry Carter

The Chemical & Biomolecular Engineering Department would like to congratulate Professor Barry Carter on his selection as an Honorary Fellow of the Royal Microscopy Society.  Professor Carter is being recognized for “…outstanding internationally-recognized contributions to microscopy in both science and education over several decades.”  Selection as a Fellow is considered the most prestigious honor bestowed by the Society.  More details regarding his appointment can be found here.

UCONN biodiesel technology is now commercial

UCONN Biodiesel technology led by Prof. Richard Parnas was installed at the wastewater treatment plant of the city of Danbury in CT. “We will be converting their waste stream, brown grease, to biodiesel fuel for use in their municipal vehicles, school buses, and heating systems” said Prof Parnas. A proposal was submitted to the city of New Haven to install the same technology to their water treatment facility. New Haven and Danbury are very excited to include UCONN as a partner in these projects.

UConn Partners in $100M DOE Innovation Hub on Water Technologies – Jeff McCutcheon leads UConn’s participation in NAWI

 

Around the world, fresh water scarcity poses a major economic, environmental, and humanitarian challenges. The U.S. Department of Energy (DOE) and other federal agencies have forged important collaborations with universities, the private sector, the National Labs, and other organization to find innovative and practical solutions to address this threat.

U.S. Secretary of Energy Rick Perry announced Monday that the National Alliance for Water Innovation (NAWI), a research consortium including the University of Connecticut, has been awarded a five-year, $100-million Energy-Water Desalination Hub (pending appropriations) to address water security issues in the United States. The hub will focus on early-stage research and development for energy-efficient and cost-competitive desalination technologies and for treating nontraditional water sources for various end uses.

Jeffrey McCutcheon, Al Geib Professor of Environmental Engineering Research and Education in UConn’s School of Engineering, is leading UConn’s participation in NAWI. McCutcheon is an internationally recognized expert in membrane technologies for sustainable water and energy production. He serves as a deputy thrust area lead for the hub’s R&D activities involving materials and manufacturing, and is also the UConn site representative to NAWI.

“UConn is excited to join a team consisting of top researchers in the field of water treatment and desalination,” says McCutcheon, who is also executive director of the Fraunhofer USA Center for Energy Innovation at UConn Tech Park. “While Connecticut does not suffer from severe water shortages, we do have water quality challenges that could see solutions emerge from this effort.”

McCutcheon anticipates that NAWI will tap into UConn’s expertise in areas like membrane technology, waste water treatment, computational development, and systems design, to create a stable and resilient water supply for agriculture, industry, and communities. NAWI hopes to achieve these goals through a “circular water economy,” by which water is treated for a specific purpose and reused at the local level rather than being transported long distances.

As a DOE Energy Innovation Hub, NAWI will not only conduct research but also develop a roadmap to prioritize the highest impact technology options, then identify and solicit projects to support those priorities.

NAWI’s goal is to advance a portfolio of novel technologies that will secure a circular water economy in which 90% of nontraditional water sources – such as seawater, brackish water, and produced waters – can be cost-competitive with existing water sources within 10 years.

According to McCutcheon, many of UConn’s research strengths align well with NAWI’s goals.

“Not only is UConn home to one of the highest quality material characterization facilities in the country, many UConn faculty members also already contribute to important water safety initiatives like Governor Lamont’s task force on hazardous chemicals in the Farmington River,” says McCutcheon. “I’m confident that UConn’s preeminent researchers and high-tech infrastructure will allow us to play a significant role in the NAWI innovation hub.”

Meet the Researcher: George Bollas, UConn Tech Park

 Consider the complexity of a modern passenger airliner. An aircraft is a self-contained “system-of-systems,” consisting of a diverse assortment of interdependent subsystems and components working together. Electrical, hydraulic, flight control, fuel handling, cabin pressurization, and engine systems are all crucial parts of a functional aircraft, each with their own constraints and requirements in addition to those of the aircraft as a whole.

The complexity of engineering interconnected systems like aircrafts — or, for that matter, power plants, smart buildings, and modern manufacturing facilities — has led many industries to migrate toward formalized systems engineering, considering large systems holistically.

Led by George Bollas, the United Technologies Corporation Institute for Advanced Systems Engineering (UTC-IASE) has been solving these real-world problems for industry since 2013.

Bollas, who is a professor of chemical and biomolecular engineering in UConn’s School of Engineering, focuses his research on process design, simulation, optimization, control, and diagnostics. These research interests align seamlessly with the needs of industry partners like United Technologies Corporation.

Located in the University of Connecticut Tech Park’s Innovation Partnership Building, UTC-IASE is working on some of the most pressing challenges for businesses and research sponsors using innovative approaches to model-based systems engineering.

“We have converted it to something that is self-sustained and can work with United Technologies at many levels, but also engage other satellite industry partners, the state, and federal agencies to have a greater impact,” says Bollas.

Location, Location, Location

At UConn Tech Park, students from different departments and research groups in the School of Engineering who are working on different projects managed by the UTC-IASE can come together in a central location. Much like the complex operations the students are researching, their individual projects and skills all work together to make systems more efficient. Bollas says this allows for close collaboration and frequent discussion of what each individual group is tackling.

“For the first time we’re all in one place,” Bollas says. “To develop that culture for students, where they work next to each other, day and night, and all that good competition that comes out of it is very positive for the mindset and culture both at UConn and when these students go out in the workforce.”

“Industry often focuses on measurable outcomes, seeking means for producing their products better, faster, and at reduced cost. Awareness of these tangible impacts helps students understand the importance of their research”, says Bollas.

“In many cases, you know from the get-go that you are going to help a company solve a $10 million-a-year problem. It’s very exciting for the students to work on something that they understand has immediate value and impact on such a huge scale,” Bollas says.

Many of the students at the UTC-IASE go into careers with United Technology Corporation or other companies in the area of manufacturing, energy, aerospace, building, and robotics. The experience contributes to the preparation of graduate and undergraduate students for these careers as they learn to communicate with industry partners effectively and consistently.

“It’s a natural next step,” Bollas says. “It’s very helpful to know where they might be going, what they’re going to face in industry or academia.”

In addition to graduate research, UTC-IASE exposes UConn students to business professionals through a training program that was originally designed for employees of the corporation. Bollas says this training is critical, since the entire concept of systems engineering works to un-train students from thinking about problems in terms of their own specificity.

“In both research and training, we emphasize the concept of system-level thinking. One needs to understand what the entire system looks like – from architecture to requirements, design, commissioning, performance, and maintenance. This approach relies on thinking of the entire life-cycle of a system from design to decommissioning.”

To accomplish this, UTC-IASE offers training of professionals through a formal Graduate Certificate and a Master of Engineering program in Advanced Systems Engineering. These programs are offered to geographically dispersed professionals as well as students at UConn who are interested in developing a unique and valuable set of skills in the areas of model-based systems engineering of cyber-physical systems.

“We’re helping lifelong learning for the existing engineering workforce,” Bollas says. “We’re helping them understand what is the state-of-the-art, and some of the approaches and solutions to the problems they are dealing with in their everyday work. We call this integration of undergraduates, graduate students, and professional engineers a ‘talent eco-system’ that can produce and sustain a modern engineering workforce in the state and for the nation.”

Big Problems, Real Solutions

Bollas is currently collaborating with Collins Aerospace to improve fault detection and isolation methods. The advanced detection algorithms Bollas and his research team are developing are optimized for actively identifying faults during aircraft operation and helping to reduce false alarms. This project has already led to two patent applications filed jointly by UConn and Collins Aerospace.

“We’re transferring what we develop here at the university to actual industry environments, where we have access to all the data, constraints, requirements, and system-specific details. We do this through internships and sabbatical leaves, and this has really been a wonderful model for technology transfer,” Bollas says. “I’m not sure we’d be aware of the significance and limitations of our research if we weren’t working with a technology leader like UTC.”

Bollas again points to the importance of location, both in Connecticut and at Tech Park, to help the institute grow.

“There are so many opportunities generated for the institute just because we are located here,” Bollas says. “We’re working with several other Tech Park centers and their industry partners since they are more and more focused on ‘smart’ processes for manufacturing.”

Bollas is referring to a paradigm shift dubbed Industry 4.0 or “smart manufacturing,” which places emphasis on cyber-physical systems. Cyber-physical systems include physical machines controlled by computer-based algorithms that are deeply ingrained in the so-called Internet of Things. To remain competitive, companies like Collins Aerospace and Pratt & Whitney have been investing in the development of smart manufacturing technologies in their respective industries.

By having access to test beds at the Connecticut Center for Advanced Technology and the Pratt & Whitney Additive Manufacturing Center in the IPB, the UTC-IASE researchers working on smart manufacturing projects with the Department of Energy provide a better picture of how well their research, algorithms, and solutions will work when used in an industrial setting.

“Smart manufacturing solutions are sometimes easy on a computer, but when you actually have to deploy these advanced technologies, it’s very helpful to have test beds we can use right here at the Tech Park,” Bollas says.

Bollas says he is proud of laying a strong foundation for future growth through partnerships with industry and federal agencies on such a large scale. Moving forward, he has no doubt that the research collaborations taking place at UTC-IASE will continue to generate innovative, real-world solutions that help Connecticut and its industry partners grow.

 – Anna Zarra Aldrich ’20 (CLAS), Office of the Vice President for Research

 

Cleaning up the environment: Dr. Valla receives NSF CAREER Award to remove sulfur from transportation fuels

Julia Valla, Assistant Professor at the Chemical and Biomolecular Environmental Department of the University of Connecticut received a CAREER Award from the National Science Foundation to research the removal of sulfur molecules from transportation fuels. The award for $500,000 will revolutionize sulfur removal using adsorption in ion exchanged zeolites.  

Valla began working on sulfur removal as a Ph.D student. By the end of the five years of her CAREER project, Valla aims to develop novel filters that can efficiently and economically remove the sulfur molecules from fuels.  

“The CAREER award was very important for me because I can continue research what I started 18 years ago. It is important that I can evolve on findings that I have already created,” Valla said.  

She explained that sulfur molecules found in transportation fuel are toxic. They have adverse effects on the environment and subsequently on humans. Sulfur oxides which can be emitted from cars can cause acid rain, which causes environmental pollution.  

“The reason why I keep pushing this effort is because the sulfur molecules, this impurity has very detrimental effects on the environment and consequently on humans, and on our lives,” Valla said, “The fossil fuels, whether we like it or not, is still our main source of energy. We do need to, of course, be looking to renewable energy resources and put our efforts into research on renewable energy. However, it’s also important to do something about the fossil fuels that we use now.” 

Currently, sulfur is removed from fuels in a process called hydrodesulfurization in the refinery. Valla said the process requires severe conditions and the use of hydrogen makes it an expensive process. Her research will focus on utilizing ion-exchanged zeolites, specifically zeolite Y, which is a porous mineral. The zeolites will be tested for their selectivity in binding to sulfur and not to other molecules in the fuel, and how well they adsorb the sulfur to reach the mandatory government standards.  

The zeolites can be regenerated and reused, which makes them a more affordable alternative to hydrodesulfurization.  

“The major challenge is to create a sorbent that has high selectivity in sulfur molecules, meaning that it will adsorb the sulfur molecules, leaving the other molecules in the fuel intact, ” Valla said.  

This project will be an iterative process that uses experiments and models to “create fundamental knowledge on how the properties of metals and bimetals-exchanged Y zeolites, such as pore size, metals properties, location, oxidation state and interaction, affect the adsorption process.”  

Valla will be working to optimize a zeolite so that it can be extremely selective in finding sulfur molecules and then adsorb them.  

She explained that this research can lead to a product that can have significant impact on the environment and consequently humans. 

“As the regulations become more strict, the refineries need to use more severe and expensive conditions in the hydrodesulfurization process, so if we find something now that’s more economical and visible that will save us a lot of lives, and environmental problems,” Valla said.  

 

Written by: By Sarah Al-Arshani 

Photography by: Thomas Hurlbut