Awards

UConn Partners with Penn State Altoona in Groundbreaking Project on Solar Power Technology

The University of Connecticut has partnered with Penn State Altoona in a collaborative research initiative, supported by a three-year, $650,000 grant from the National Science Foundation. The project is entitled “Electro-optical studies of nanoscale, geometrically asymmetric tunnel junctions for collection and rectification of light from infrared through visible” and will study the physics of a device, called a “rectenna,” that has the potential to dramatically advance solar power technology.

The research team includes UConn’s Dr. Brian Willis of Chemical Engineering; Drs. Gary Weisel, Brock Weiss and Darin Zimmerman (Altoona Physics); and emeritus professors Paul Cutler and Nicholas Miskovsky (Penn State Physics).

The rectenna will harness the visible portion of the solar spectrum, setting it apart from current technologies that are only capable of utilizing the infrared portion. The rectenna will comprise a nanosized antenna and ultra-fast tunnel diodes that collect and rectify solar radiation from infrared to visible. To manufacture such a device, the team developed a process called selective atomic layer deposition. This process makes the fabrication of arrays of thousands of nanoscopic, geometrically asymmetric tunnel junctions possible for the first time. The progress made possible by this research endeavor may increase solar power conversion technology efficiency, reduce costs, and create new economic opportunities. The project will enfold research and educational opportunities for high school, undergraduate and graduate students.

Nantenna

Professor Ma Received the “Distinguished Young Rheologist Award” from TA Instruments

AnsonMa2012Dr. Anson Ma of the Chemical Engineering Program has been chosen to receive the “Distinguished Young Rheologist Award” from TA Instruments. The decision was made by a panel comprising some of the most established and respected scientists in the field of rheology. Dr. Ma and his research team will receive an equipment grant for a new rheometer valued at $50,000.

Dr. Ma joined UConn in August 2011 with a dual appointment in the Polymer Program at the Institute of Materials Science. The mission of his lab, Complex Fluids Laboratory, is to understand the rheology and processing of complex fluids (e.g., foams, emulsions, polymers, and biological fluids). Current research interests in Dr. Ma’s lab involve (i) exploring the interfacial rheology of nanoparticle-laden interfaces for creating ultra-stable emulsions and microcapsules, and (ii) understanding the flow dynamics of nanoparticles in simulated blood flows for improved cancer treatment (currently sponsored by the National Science Foundation through NSFGRF and EAGER awards).

TA Instruments – a subsidiary of Waters Corporation (NYSE: WAT) – is a leading manufacturer of analytical instruments for thermal analysis, rheology, and microcalorimetry. The company is headquartered in New Castle, Delaware, USA, and has direct operations in 23 countries. TA Instruments established the “Distinguished Young Rheologist” award to recognize product innovation and research into new materials and applications that expand the field of rheology, and to help accelerate the research of new academics.

New Research Awards

The Chemical & Biomolecular Engineering Program would like to recognize their respective faculty members who have recently been granted new funding initiatives.

Daniel Gage (Molecular and Cell Biology) and Leslie Shor, USDA/National Institute of Food and Agriculture, Microfluidic Studies of Signaling Between Rhizosphere Bacteria and their Predators, 2/12-2/14, $150,000.

Yu Lei, University of Connecticut Center for Science & Technology Commercialization, Naked Eye-based Standoff Detection of Explosives Using Novel Signal-Amplifying Nanocomposite and Hand-held UV Light, 8/12-12/13, $7,500.

Anson Ma, NSF, Understanding the Flow Dynamics and Transport of Nanoparticles in Simulated Tumor Blood Flows for Improved Cancer Treatment, 9/12-8/14, $150,000.

Jeffrey McCutcheon, NSF, Collaborative Research: Modified Reverse Osmosis Membranes for Forward and Pressure Retarded Osmosis, 8/12-7/15, $234,405.

Jeffrey McCutcheon, Solvay Specialty Polymers, Polymeric Membranes for Emerging Separation Processes, 1/12-4/13, $102,679.

Jeffrey McCutcheon, Chevron USA, Produced Water Treatment using Forward Osmosis; Phase 1: Membrane Performance Testing, 4/12-1/13, $45,000.

Mu-Ping Nieh, James Cole (Molecular and Cell Biology) and Douglas Adamson (Chemistry), NSF, MRI: Acquisition of a State-of-the-Art Small Angle X-Ray Scattering (SAXS) Instrument for Research and Education, 9/12-8/15, $568,398.

Richard Parnas and Tim Dowding (School of Business), University of Connecticut Center for Science & Technology Commercialization, Biomass Waste to Construction Board, 5/12-1/13, $40,840.

Ioulia Valla and Prabhakar Singh, Precision Combustion Inc., 13X Zeolite as Potential Molecular Sieve for Gas Phase Impurities Removal: Emphasis on the Characterization of the Zeolite, 7/12-7/12, $9,995.

Ioulia Valla and George Bollas, NSF, Turning Tars into Energy: Zeolites with Hierarchical Pore Structure for the Catalytic Cracking of Tars, 8/12-7/14, $188,698.

Yong Wang, NSF, CREATIV: Programming Materials via Biomolecular Engineering, 9/12-8/15, $400,000.

Professor Ma Received NSF EAGER Award

MaDr. Anson Ma of the Chemical Engineering Program has recently received NSF EAGER award (#1250661) to understand the flow dynamics of nanoparticles in simulated blood flows. Nanoparticles show great promise in delivering anticancer drugs more directly to tumors, thereby reducing the toxic side effects to normal tissues. The passive accumulation of nanoparticles in tumors is due to the enhanced permeability and retention (EPR) effect, caused by the leaky nature of the tumor vasculature. In order to improve cancer treatment, there is an urgent need to understand the detailed mechanism of EPR.

Dr. Ma and his team will construct novel microfluidic devices that mimic blood bifurcation and leaky tumor blood vessels. The trajectory of nanoparticles in stimulated blood flows will then be characterized. The proposed research will strengthen our fundamental understanding of the EPR effect – the hallmark of passive targeted delivery of anticancer drugs. The success of the proposed research will also have far-reaching implications on the rational design of nanoparticles to allow more specific delivery of anticancer drug to tumors, thereby increasing patient comfort during cancer treatment and fulfilling a societal need.

Dr. Leslie Shor Recognized as Finalist in the Annual Women of Innovation Awards Dinner

shorWomenInnovationThe department would like to extend its congratulations to Leslie Shor for her recognition as a finalist in the 8th Annual Women of Innovation Awards Dinner hosted by the Connecticut Technology Council.
Every year, the Connecticut Technology Council recognizes the dedication and achievements of women in engineering, science and business in Connecticut.
Leslie Shor has been recognized in Academic Innovation and Leadership through her role as a leader and mentor of the Engineered Microhabitats Research Group for the University of Connecticut. She uses the artificial microbial habitats as a teaching tool to explore its effects on agriculture, biofuels and disease.

Wenzhao Jia receives Engineering Outstanding Senior Women Award

Jia_WenzhaoWenzhao Jia receives Engineering Outstanding Senior Women Award. Wenzhao has proved to be an outstanding student with a distinguished academic background and exceptional research abilities. Her doctoral research concentrates on the preparation, characterization and sensing application of novel nnaostructured functional materials.

During her study in UConn, she has published seventeen peer-reviewed articles (seven first-authored and ten co-authored papers in highly prestigious journals such as Journal of Physical Chemistry C, Biosensors and Bioelectronics, etc.). In addition, she has published one co-authored book chapter. Another two first-authored research manuscripts and several co-authored research manuscripts are under preparation. Wenzhao Jia is also actively involved in mentoring undergraduate researchers.