Professor Anson Ma of the Chemical Engineering Program has received the CAREER award (#1253613) from the National Science Foundation (NSF). The Faculty Early Career Development (CAREER) Program is NSF’s most prestigious award for junior faculty, reserved for those who embody the role of “teacher-scholars” by seamlessly integrating outstanding research and excellent education. Ma’s award is given by the Fluid Dynamics Program of the Chemical, Bioengineering, Environmental, and Transport Systems (CBET) Division. The award provides $400,000 in research funding support over a period of 5 years.
The title of Dr. Ma’s winning proposal is “Understanding the interfacial rheology of carbon nanotubes at the fluid-fluid interfaces for creating ultra-stable emulsions and microcapsules”. Particles of appropriate size and wetability are known to stabilize emulsions, but the effect of particle shape remains largely unexplored. Dr. Ma and team propose that the shape matters and that particle shape could be the missing key to unlock the full potential of using particles to stabilize emulsions. To this end, Dr. Ma and his team will investigate the flow behavior of CNTs at fluid-fluid interfaces using carbon nanotubes as a model system. The success of the proposed research will offer a general and yet relatively simple strategy (i.e., by exploiting particle shape) to improve the stability of emulsions, prolonging the shelf life of widely used pharmaceutical, agricultural, and personal care products. The findings may also revolutionize the use of nanoparticles for enhanced oil recovery, essential to ensuring national energy independence and addressing the world’s energy challenge.
Further, Dr. Ma has a long-term vision that the asymmetry of the interface may offer an effective way to assemble nanoparticles into ordered structures and to create next-generation metamaterials. Metamaterials are hierarchically ordered structures that can be used in cloaking devices and light-based circuits that may ultimately outperform electron-based computers in terms of speed, power consumption, and costs. The proposed research will be integrated with educational and outreach activities at all levels to maximize its impact. Dr. Ma and his team will use culinary foams and emulsions (e.g., cappuccino foam, ice cream mix) as the theme to introduce basic scientific concepts to the younger generation and the local community.
Dr. Ma, who earned his Ph.D. from the University of Cambridge in the UK, joined UConn in August 2011 following a two-year appointment as the J. Evans Attwell-Welch Postdoctoral Fellow at Rice University. He has a dual appointment in the Polymer Program at the Institute of Materials Science (IMS). He recently received the Distinguished Young Rheologist Award from TA Instruments, which recognizes young faculty members who show exceptional promise in the field of rheology. Prior to that, he received the National Science Foundation Early Concept Grant for Exploration Research (EAGER) award, which focuses on investigating the use of nanoparticles in the delivery of cancer drugs.