Dr. Anson Ma of the Chemical Engineering Program has recently received NSF EAGER award (#1250661) to understand the flow dynamics of nanoparticles in simulated blood flows. Nanoparticles show great promise in delivering anticancer drugs more directly to tumors, thereby reducing the toxic side effects to normal tissues. The passive accumulation of nanoparticles in tumors is due to the enhanced permeability and retention (EPR) effect, caused by the leaky nature of the tumor vasculature. In order to improve cancer treatment, there is an urgent need to understand the detailed mechanism of EPR.
Dr. Ma and his team will construct novel microfluidic devices that mimic blood bifurcation and leaky tumor blood vessels. The trajectory of nanoparticles in stimulated blood flows will then be characterized. The proposed research will strengthen our fundamental understanding of the EPR effect – the hallmark of passive targeted delivery of anticancer drugs. The success of the proposed research will also have far-reaching implications on the rational design of nanoparticles to allow more specific delivery of anticancer drug to tumors, thereby increasing patient comfort during cancer treatment and fulfilling a societal need.